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for Lepton Flavor Violation (LFV) as well as CP-violation. In this paper, we show that

when both sources are present, the electric dipole moment of the electron, de, receives

a contribution from the phase of the trilinear A-term of staus, φAτ . For φAτ = π/2,

the value of de, depending on the ratios of the LFV mass elements, can range between

zero and three orders of magnitude above the present bound. We show that the present

bound on de rules out a large portion of the CP-violating and the LFV parameter space

which is consistent with the bounds on the LFV rare decays. We discuss the possibility

of a correlation between de and the P-odd asymmetry in τ → eγ. We also discuss the

possibility of cancelation among the contributions of different CP-violating phases to de.
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1. Introduction

As is well-known, elementary particles can possess electric dipole moments only if CP is

violated. In the framework of the Standard Model (SM) of the elementary particles, the

3×3 quark mixing matrix (the CKM matrix) can accommodate a CP-violating phase. In

fact, CP-symmetry in the meson system has been observed to be violated in accord with

the SM. However, the effect of the CP-violating phase of the CKM matrix on the Electric

Dipole Moment (EDM) of the electron, de, is shown to be very small [1] and beyond the

reach of experiments in the foreseeable future [2, 3]. Thus if the forthcoming [3] or proposed

experiments detect a nonzero de, it will be an indication of physics beyond the SM.

Recent neutrino data proves that Lepton Flavor (LF) has been violated in nature.

The effect can be explained by mixing in the neutrino mass matrix. In principle such a LF

Violation (LFV) in neutrino mass matrix can lead to the LFV decays, τ → eγ, τ → µγ and

µ → eγ [4]. However, if the neutrino mass matrix is the only source of LFV, the branching

ratio of these decays will be so small that cannot be detected in foreseeable future. In the

future, if experiments report a nonzero branching ratio for any of the aforementioned LFV

decays [5], we will conclude that the SM has to be augmented to include more sources

of LFV. In the context of Minimal Supersymmetric Standard Model (MSSM), which is

arguably the most popular extension of the SM, there are several sources for CP-violation

as well as for LFV which can lead to effects exceeding the present experimental bounds.

The bounds on Br(ℓj → ℓiγ) constrain the sources of LFV in the MSSM. Moreover, the

bounds on the EDM of the elementary particles constrain the CP-violating phases of the

MSSM. For vanishing LFV sources, the bounds from the EDMs on the CP-violating phases

of MSSM parameters have been extensively studied in the literature (for an incomplete list

see) [6 – 8]. In [9], the effects of the phases of LFV masses as well as the LFV trilinear
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A-couplings on de have been studied. However, [9] does not discuss the possible effects

of the phase of Aτ (the trilinear supersymmetry breaking coupling of stau). Notice that

although Aτ is a LF conserving coupling which deals only with the staus, in the presence

of LFV, it can affect the properties of leptons of other generations.

In this paper, taking into account the possibility of the LFV in soft supersymmetry

breaking terms, we will focus on the possible effects of the phase of Aτ on the electric dipole

moment of the electron. As is well-known, the phase of Aτ , φAτ , can also manifest itself in

the decay and production of staus [10]. One of the goals of the proposed state-of-the-art

ILC project is detecting such effects [11]. It is therefore very exciting to learn about the

value of φAτ by present or forthcoming low energy experiments.

We show that for Br(τ → eγ) close to its present bound, the bound on de can already

constrain φAτ . We discuss how other sets of the CP-violating phases can mimic the effect

of φAτ on de and suggest some ways to resolve the degeneracies. Recently, it has been

shown in [12] that by measuring the spin of the final particles in the LFV rare decays,

one can extract information on the CP-violating phases of the underlying theory. In the

present paper, we however do not take into account such a possibility and focus on the

spin-averaged decays rate.

The paper is organized as follows. In section 2, we specify the model that we study in

this paper and summarize the observable effects that can be used to extract information

on the parameters of the model. In section 3, we discuss how CP-violating and LFV

parameters affect de and other observable quantities and present scatter plots that explore

the parameter space. In section 4, we first enumerate the possible CP-violating phases

and evaluate their respective effects with special emphasis on the possibility of cancelation.

Section 5, summarizes our conclusions. The formulae for calculating the rate of LFV rare

decays and de are summarized in the appendix.

2. The model and its observable effects

In this section we specify the model and the sources of LFV and CP-violation that we are

going to study.

In this paper, we consider the Minimal Supersymmetric Standard Model with super-

potential

WMSSM = −Yiê
c
Ri L̂i · Ĥd − µ Ĥu · Ĥd (2.1)

where L̂i, Ĥu and Ĥd are doublets of chiral superfields respectively associated with left-

handed leptons and the two Higgs doublets of the MSSM. In the above formula, êc
Ri is the

chiral superfields associated with the right-handed charged lepton fields. The index “i”

determines the flavor; i = 1, 2, 3 respectively correspond to e, µ, τ . Notice that we have

chosen the mass basis for the charged leptons (i.e., Yukawa coupling of the charged leptons

is taken to be diagonal). Notice that the Yukawa terms involving the quark supermultiplets

have to be added to (2.1). However, since we are going to concentrate on the lepton sector,

we have omitted such terms. At the electroweak scale, the soft supersymmetry breaking
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part of the Lagrangian in general has the form

ÃLMSSM
soft = − 1/2

(
M1B̃B̃ + M2W̃ W̃ + H.c.

)

−(AiYiδij + Aij)ẽc
Ri L̃j · Hd + H.c.) − L̃i

†
(m2

ẽL
)ijL̃j − ẽc

Ri

†
(m2

ẽR
)ij ẽc

Rj

− m2
Hu

H†
u Hu − m2

Hd
H†

d Hd − ( BH Hu · Hd + H.c.), (2.2)

where the “i” and “j” indices determine the flavor and L̃i consists of (ν̃i ẽLi). Notice that

we have divided the trilinear coupling to a flavor diagonal part (AiYiδij) and a LFV part

(Aij with Aii = 0). Again terms involving the squarks as well as the gluino mass term

have to be added to (2.2). The Hermiticity of the Lagrangian implies that m2
Hu

, m2
Hd

and

the diagonal elements of m2
ẽL

and m2
ẽR

are all real. Moreover, without loss of generality we

can rephase the fields to make the parameters M2, BH as well as Yi real. In such a basis,

the rest of above parameters can in general be complex and can be considered as sources

of CP-violation giving contributions to EDMs.

After electroweak symmetry breaking, the A-terms in (2.2) as well as the terms in

superpotential induce left-right mixing. The Hermitian 6×6 mass matrix of (ẽR)i and

(ẽL)j can in general be written in terms of three 3×3 mass sub-matrices m2
L, m2

R and m2
LR

as follows

Lslepton = −
(

ẽ†L ẽ†R

)(
m2

L m2†
LR

m2
LR m2

R

)(
ẽL

ẽR

)
. (2.3)

The formulae for m2
L, m2

R and m2
LR in terms of the soft supersymmetry breaking potential

are given in eqs. (A.2), (A.3), (A.4) of the appendix. With above Lagrangian and super-

potential, the LF is conserved if and only if Aij = 0 and the off-diagonal elements of m2
ẽL

and m2
ẽR

vanish (for i 6= j, (m2
L)ij = (m2

R)ij = Aij = 0). At the one loop level, in the

lepton conserving case, each A term can contribute to the EDM of only the corresponding

fermion. For example, at the one loop level, the phase of Aτ will have no effect on de but

can induce an EDM for the tau lepton of order of Im(Aτ )mτ/m
3
SUSY. Considering the fact

that the bound on the EDM of tau is much weaker than this [13], no bound on φAτ from

dτ can be derived. In the LF conserving case, de will receive significant contributions from

the phases of Ae, µ and M1. Thus, the strong bound on de can be translated into bounds

on the phases of these parameters. In the literature, it is shown that for relatively low

scale supersymmetry (mSUSY < 500 GeV), the bounds on these phases from de are very

strong [8] unless severe cancelation takes place [6].

At the two-loop level, even in the lepton flavor conserving case, the phase of Aτ can

induce a contribution to de as well as to dn [14].1 For relatively large values of tan β

(tan β ≥ 10) and mSUSY ≃ 100 GeV, the bound on de can be translated into a bound

of order of few hundred GeV on Im[Aτ ]. The limit from the bound on dn even is less

stringent.2

For LFV case, the A-term associated with a definite lepton flavor can in principle

affect the EDM of a lepton of another flavor, even at the one-loop level. In particular if

1Although in [14] the two-loop effects of only Im[Ab] and Im[At] on de and dn have been discussed,

similar discussion also holds for Im[Aτ ].
2We would like to thank the anonymous referee for pointing out such a possibility.
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the eτ element of m2
L and m2

R or Aij are nonzero, the phase of Aτ can induce an EDM for

the electron exceeding the present bound by several orders of magnitudes. As a result, in

this case the strong bound on de can severely restrict the phase of Aτ . In order to study

this bound, we have to first consider the bounds on the LFV masses and A-terms from the

bounds on the LFV decay modes of the charged leptons. Notice that throughout this paper

we have implicitly assumed that the origin of LFV lies at an energy scale far above the

scale of the electroweak symmetry breaking. We therefore have the same LFV-violating

elements for the left-handed charged lepton and sneutrino mass matrices.

The strongest upper bound on the LFV elements of the slepton mass matrices comes

from the following experimental bound:

Br(µ → eγ) < 1.2 × 10−11 (2.4)

which for mSUSY ∼ 100 GeV implies (m2
L)eµ, (m2

R)eµ
<∼ 10−4−10−3(m2

SUSY) and Aeµ, Aµe
<∼

0.05m2
SUSY/〈Hd〉. Throughout this paper we will set these LFV elements equal to zero:

(m2
L)eµ = (m2

R)eµ = 0 and Aeµ = Aµe = 0.

There are also strong bounds on the branching ratios of LFV decay modes of the tau lepton:

Br(τ → eγ) < 9.4 × 10−8 [15] (2.5)

and

Br(τ → µγ) < 1.6 × 10−8 [15] (2.6)

which can be respectively translated into bounds on the τe- and τµ-elements. However, it

can be shown that the bound on the τe-elements from (2.5) are not very strong and these

elements can be of the same order as the diagonal elements. Suppose that both the τe-

and τµ-elements are nonzero. This means the e- and µ-lepton numbers are both violated

and the µ → eγ decay can therefore take place despite the vanishing µe-elements. In fact,

for relatively large τe-elements saturating the bound from (2.5), the bound (2.4) can be

translated into a strong bound on the τµ-elements which is more stringent than the bound

from Br(τ → µγ). Throughout this paper, we will set all the τµ equal to zero:

(m2
L)µτ = (m2

R)µτ = 0 and Aµτ = Aτµ = 0.

In this scenario, the µ-flavor number is thus conserved.

As shown in the literature, integrating out the heavy supersymmetric states, τ → eγ

can be described by the following effective Lagrangian

eǫ†αmτqβ

[
ēRσαβ(AL)eττL + ēLσαβ(AR)eττR

]
+ H.c. (2.7)

where ǫα is the photon field and qβ is its four-momentum and σαβ = i
2 [γα, γβ ]. The

formulae for AL and AR in terms of the supersymmetric parameters have been derived

in [16] for the CP-invariant case. We have re-derived the formulae for the CP-violating

case. The results can be found in the appendix. Our results are in agreement with [16] in
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the CP-invariant limit. Using (2.7) it is straightforward to show that in the rest frame of

the tau lepton, the partial decay rate is given by

dΓ(τ → eγ)

d cos θ
=

e2

32π
m5

τ

[
(|(AL)eτ |2(1 + cos θ) + |(AR)eτ |2(1 − cos θ)

]
(2.8)

where θ is the angle between the spin of the tau and the momentum of the emitted electron.

Integrating over θ we obtain

Γ(τ → eγ) =
e2

16π
m5

τ (|(AL)eτ |2 + |(AR)eτ |2). (2.9)

Notice that different sets of LFV mass matrix elements can result in the same rate for

τ → eγ. Let us define the AP asymmetry as follows

AP = 4 ×
∫ 1
0

dΓ(τ→eγ)
d cos θ

d cos θ −
∫ 0
−1

dΓ(τ→eγ)
d cos θ

d cos θ

Γ(τ → eγ)
. (2.10)

Using (2.8), we can prove that

AP =
|(AL)eτ |2 − |(AR)eτ |2
|(AL)eτ |2 + |(AR)eτ |2

.

Thus by measuring the partial decay rate of τ , we will be able to extract not only

(|(AL)eτ |2 + |(AR)eτ |2) but also (|(AL)eτ |2 − |(AR)eτ |2). In [17], it has been shown that

by studying the angular distributions of the final particles at an e−e+ collider such as a

B-factory, it will be possible to derive AP . AP provides us with more information on the

LFV parameters of the underlying theory. For example, if the source of LFV is a canonical

seesaw mechanism embedded in the MSSM, we expect (m2
R)eτ ≪ (m2

L)eτ and Aeτ ≪ Aτe

which means |(AL)eτ |2 ≪ |(AR)eτ |2 and therefore AP → −1. In this paper, we will study

the correlation between de, Br(τ → eγ) and AP and discuss the possibility of resolving the

degeneracies by combining the information on their values.

3. New contributions to de in the presence of LFV

Let us for the moment suppose Aeτ = Aτe = 0. As illustrated in figure 1, for nonzero

(m2
R)eτ and (m2

L)τe, the phase of Aτ can induce a contribution to de. As a result for

definite values of the off-diagonal mass elements, the bound on de can be interpreted as a

bound on φAτ or on Im(Aτ ). Consider the case that both (m2
R)τe and (m2

L)τe are close to

the corresponding bounds from Br(τ → eγ). In this case, Br(τ → eγ) is close to its present

bound and AP takes a value in the interval (-1,1); i.e., AP 6= ±1. For such a configuration,

we expect the bound on Im(Aτ ) to be more stringent than the bound on Im(Ae) because the

effect of Im(Aτ ) is given by mτ Im(Aτ )(m2
R)eτ (m

2
L)eτ/m7

susy, whereas the effect of Im(Ae) is

proportional to meIm(Ae)/m
3
susy. Now, suppose only one of (m2

R)eτ and (m2
L)τe is close to

its upper bound from Br(τ → eγ) and the other is zero or very small. In this case, AP will

converge either to 1 (for (m2
R)eτ ≫ (m2

L)eτ ) or to -1 (for (m2
L)eτ ≫ (m2

R)eτ ). From figure 1

we observe that if only one of (m2
R)eτ or (m2

L)τe is nonzero and the rest of the eτ entrees
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eL eR

χ̃0

ẽL

τ̃L τ̃R

ẽR

〈Hd〉

Figure 1: A neutralino exchange diagram contributing to de. The photon can attach to any of the

ẽL, τ̃L, τ̃R or ẽR propagators. The boxes on the left and right sides respectively depict insertion of

(m2
L)eτ and (m2

R)eτ . The circles indicate insertion of the Aτ vertex and the vacuum expectation

value of Hd.

(including Aeτ and Aτe) vanish, at one-loop level, the phase of Aτ cannot contribute to de.

Figure 2 demonstrates this observation. To draw the figures in this paper, we have

chosen the mass spectrum corresponding to the α benchmark proposed in [18]. However,

we have allowed the mass spectrum of the staus to slightly deviate from these benchmarks.

Notice that at these benchmarks, the lightest stau is considerably heavier than the lightest

neutralino so stau-neutralino coannihilation cannot play any significant role in fixing the

dark matter relic density. As a result, a slight change of stau parameters will not dra-

matically affect the cosmological predictions. Although for illustrative purposes we have

displayed the mass insertion approximation in figure 1, to calculate de and Br(τ → eγ) we

have used the exact formulae (without the mass insertion approximation) presented in the

appendix.

Figure 2 depicts de in terms of the sine of φAτ for Aij = 0 and various values of (m2
L)eτ

and (m2
R)eτ . This diagram demonstrates that for (m2

L)eτ and (m2
R)eτ close to their bounds

from Br(τ → eγ), a very strong bound on φAτ can be derived. That is while if there

is a hierarchy between these elements, the bound will be much weaker. Notice that for

the input parameters chosen for this figure, Br(τ → eγ) lies close to its present bound:

10−8 < Br(τ → eγ) < 10−7.

Figure 3 shows possible values of AP and de as the LFV elements pick up random

values. As explained in the caption, the input mass spectrum is that of the α benchmark [18]

and |Aτ | = 500 GeV. We have set maximal value for the CP-violating phase: φAτ = π/2.

(m2
L)τe, (m2

R)τe, (m2
LR)eτ (= Aeτ 〈Hd〉) and (m2

LR)τe(= Aτe〈Hd〉) pick up random values at

logarithmic scales. Points for which Br(τ → eγ) exceeds its present bound are eliminated.

Figure (3-a) shows us that if φAτ = π/2, de for a significant portion of the scatter points

exceeds the present bound. Figure (3-b) shows AP versus Br(τ → eγ) for the same scatter

points. To examine the correlation between Ap and de, we have shown the corresponding

scatter points in Fig 3-a and Fig 3-b with the same color and symbol. That is at points

– 6 –
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0-2

7 ec
m

]

Sin(ϕAτ
)

a
b
c

Figure 2: de versus sinφAτ
. The input parameters correspond to the α benchmark proposed in [18]:

|µ| = 375GeV, m0 = 210GeV, M1/2 = 285GeV and tanβ = 10 and we have set |Aτ |=500GeV. All

the LFV elements of the slepton mass matrix are set to zero except (m2
L)eτ and (m2

R)eτ . The dotted

(pink) line labeled (a) corresponds to (m2
L)eτ =3500 GeV2 and (m2

R)eτ=15000 GeV2. The dashed

(green) line labeled (b) corresponds to (m2
L)eτ=50 GeV2 and (m2

R)eτ=37000 GeV2. The solid (red)

line labeled (c) corresponds to (m2
L)eτ=3500 GeV2 and (m2

R)eτ=30 GeV2. The horizontal doted

line at 1.4 × 10−27 e cm depicts the present experimental limit [13] on de.

marked with green dots, de exceeds its present bound and at the scatter points marked

with blue cross “×” 10−29 < de < 1.4 × 10−27 e cm. The scatter points depicted by pink

circle, correspond to de < 10−29 e cm.

The significant point is that setting all the eτ mass elements nonzero, no correlation

among AP , de and Br(τ → eγ) appears. That is figure (3-b) contains points with Br(τ →
eγ) ∼ 10−7, −0.9 < AP < 0.9 and de < 10−29 e cm. The presence of these points can

be explained by the fact that when Aeτ and (m2
L)eτ are nonzero but Aτe = (m2

R)eτ = 0

(or equivalently, when Aτe and (m2
R)eτ 6= 0 but Aeτ = (m2

L)eτ = 0) de, despite large

φAτ , remains zero but AL can be of order of AR which yields −0.9 < AP < 0.9. As a

result, without independent knowledge of the ratios of LFV elements, we cannot derive

any conclusive bound on φAτ even if we find −0.9 < AP < 0.9 and 10−8 < Br(τ → eγ). We

have repeated the same analysis for other benchmarks and the results seem to be robust
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0.001 0.01 0.1

|d
e|

  [
10

-2
8 ec

m
]

Br(τ→eγ)  [10-7]

-1

-0.5

0

0.5

1

0.001 0.01 0.1

A
p

Br(τ→eγ)  [10-7]

(a) (b)

Figure 3: a) Scatter plot of de versus Br(τ → eγ). The input parameters correspond to the α

benchmark proposed in [18]: |µ| = 375GeV, m0 = 210GeV, M1/2 = 285GeV and tanβ = 10.

We have however set φAτ
= π/2 and |Aτ | = 500GeV. The values of (m2

L)eτ and (m2
R)eτ are

randomly chosen respectively from (0.59 GeV2, 5.9× 103 GeV2) and (3.7 GeV2, 3.7× 104 GeV2) at

a logarithmic scale. (m2
LR)eτ and (m2

LR)τe pick up random values at a logarithmic scale from the

interval (0.12 GeV2, 1.2 × 103 GeV2). The horizontal line at 1.4 × 10−27 e cm depicts the present

experimental limit [13] and the one at 10−29 e cm shows the limit that can be probed in the near

future [3]. b) Scatter plot of AP versus Br(τ → eγ). For each scatter point in figure 3-a there is a

counterpart in figure 3-b corresponding to the same input values for the eτ elements which is shown

with the same color and symbol.

against changing the mass spectrum.

As explained earlier, some models predict a certain pattern for LFV. For example,

within the framework of the seesaw mechanism embedded in the constrained MSSM, we

expect the LFV to be induced mainly on the left-handed sector [19]. That is we expect

(m2
R)eτ ≪ (m2

L)eτ and Aeτ/Aτe ∼ me/mτ ≪ 1. This model predicts AP = −1. On the

contrary, within the supersymmetric SU(5) GUT model without right-handed neutrinos,

the LFV is induced only on the right-handed sector [20] which implies AP = 1. For both

of these cases, de induced by φAτ is negligible.

In the above discussion, we have used the bound on φAτ and on Im(Aτ ) interchangeably.

To clarify the relation between these two, figure (4) has been presented which shows curves

of de = 1.4 × 10−27 e cm (the present bound) for the α and δ benchmarks and various

values of the off-diagonal elements. The values of the LFV elements are chosen in a range

to obtain Br(τ → eγ) close to the present bound; i.e., 10−8 < Br(τ → eγ) < 10−7. Each

curve can be considered as the upper bound on φAτ . These figures also confirm that when

there is a hierarchy between the left and right LFV elements, the bounds are weaker. As

expected, the curves have a shape close Im(Aτ ) = |Aτ | sin φAτ = cte.

In summary, within a model that Aij = 0, if Br(τ → eγ) turns out to be close to its

– 8 –
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Figure 4: Contour plots for de=1.4 × 10−27. a) The α benchmark proposed in [18] is taken

as the input. The dotted blue curve corresponds to (m2
L)eτ =3500 GeV2, (m2

R)eτ=1500 GeV2

and (m2
LR)τe=(m2

LR)eτ=0 and the thick solid red curve corresponds to (m2
L)eτ=3000 GeV2,

(m2
R)eτ=1000 GeV2, (m2

LR)eτ=300 GeV2 and (m2
LR)τe=100 GeV2. The dashed green curve cor-

responds to (m2
L)eτ=3000 GeV2, (m2

R)eτ =100 GeV2, (m2
LR)eτ=10 GeV2 and (m2

LR)τe=500 GeV2.

b) The δ benchmark proposed in [18] is taken as the input: |µ| = 920GeV, m0 = 500GeV,

M1/2 = 750GeV and tanβ = 10. The dotted blue curve corresponds to (m2
L)eτ =7× 104 GeV2 and

(m2
R)eτ=2× 104 GeV2 and the thick red curve corresponds to (m2

L)eτ =2× 104 GeV2, (m2
R)eτ =3×

104 GeV2, (m2
LR)eτ=3000 GeV2 and (m2

LR)τe=7000 GeV2. The dashed green curve corresponds

to (m2
L)eτ=1 × 105 GeV2, (m2

R)eτ=3000 GeV2, (m2
LR)eτ=30 GeV2 and (m2

LR)τe=8000 GeV2.

present bound and AP deviates from +1 and -1, the bound on de puts a strong bound on

Im(Aτ ). However, if AP = ±1, the bound on de can be explained by a hierarchy between

the (m2
L)τe and (m2

R)τe elements instead of by the smallness of Im(Aτ ). Similar discussion

holds for the scenario in which (m2
R)eτ = (m2

L)eτ = 0 and instead Aeτ and Aτe are nonzero:

while for AP 6= ±1, the bound on de can severely restrict φAτ , for AP = ±1 we cannot

obtain any bound on φAτ from de. However, within a scenario that Aeτ , Aτe, (m2
R)τe and

(m2
L)τe are all large, we cannot derive any bound on φAτ even if AP 6= ±1. Thus, in order

to derive a conclusive bound on φAτ , one has to resolve these degeneracies seeking help

from an experiment other than the rare τ decay. Studying LFV signals at a e−e+ collider

with energy of center of mass of a few hundred GeV can help in this direction [21]. In this

paper we have concentrated on the possibilities that the ongoing experiments can bring

about. Studying the possibilities with ILC is beyond the scope of the present paper.

4. Degeneracies between different sources of CP-violation

In the previous section, we had assumed that the only source of CP-violation is the phase

of Aτ . However, within the framework of general MSSM, there are multiple sources of CP-

violation. In the basis described in section 2, these phases include the phases of Ae, the
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µ-term and M1 (the Bino mass) that can contribute to de regardless of the conservation or

violation of LF. Within the scenario considered in this paper, in addition to these sources,

the phases of Aeτ , Aτe, (m2
L)eτ and (m2

R)eτ can be also considered as independent sources of

CP-violation that can contribute to de. If we assume that only one of these various phases

is nonzero, the present bound on de can be interpreted as a strong bound on the nonzero

phase. However, in general when more than one phase is present, the effects of different

phases can cancel each other [6]. Moreover, if the forthcoming searches report a nonzero de,

without additional information, we cannot disentangle the source of CP-violation. In this

section, we discuss the degeneracies between different sources of CP-violation with special

emphasis on the possibility of cancelation.

Figures 5–7 display the degeneracies between possible CP-violating phases. To draw

these figures, we have inserted the mass spectrum of the α benchmark proposed in [18]

(see caption of figure 3 for the values of the relevant parameters) and we have set Aτ =

Ae = 500 GeV. Each of figures 5–7 corresponds to a different set of absolute values for the

LFV elements (m2
L)eτ , (m2

R)eτ , Aτe and Aeτ . Each curve in these figures shows de versus

Br(τ → eγ) as a certain CP-violating phase varies from zero to π while the rest of the

phases are set to zero. As expected all the curves converge at de = 0 which corresponds

to the zero value of the varying phase. As the value of the varying phase reaches π/2, de

obtains its maximum value so the peak of each curve corresponds to the varying phase

equal to π/2. The horizontal lines at de = 1.4× 10−27 e cm in the figures show the present

upper bound on de and the vertical lines at Br(τ → eγ) = 9.4 × 10−8 show the present

bound on Br(τ → eγ). In the following, we discuss these figures one by one.

Drawing figure 5, we have set |(m2
L)eτ | = 3500 GeV2, |(m2

R)eτ | = 15000 GeV2 and

Aeτ = Aτe = 0. The CP-violating phases that can contribute to de include φAe , φAτ ,

φµ, φM1
and the phases of (m2

L)eτ and (m2
R)eτ . The thick vertical line at Br(τ → eγ) =

3.8×10−8 corresponds to the variation of φAe in [0, π]. This line shows that Br(τ → eγ) does

not significantly change as φAe varies. The reason is that the effect of Ae on Br(τ → eγ)

is much smaller than the dominant effect. The line associated with φAe (the thick line)

reaches values of de up to one order of magnitude higher than the present bound on de

which means if φAe is the only contributor to de, it cannot be larger than O(0.1). This

bound is similar to the bound in the LF conserving case. Notice that the effects of the

rest of phases can exceed the maximal contribution from φAe by more than one order of

magnitude. In this figure, the curves associated with the phases of (m2
L)eτ and (m2

R)eτ ,

which are depicted by black and pink dotted curves, coincide. This observation is valid

as long as Aeτ = Aτe = 0 because the diagram shown in figure 1 — which in this case

is the only diagram contributing to de — is sensitive only to the relative phase of (m2
L)eτ

and (m2
R)eτ . Another peculiar feature of figure (5) is that the contribution of φM1

to de

can exceed the maximum de from φµ. This is opposite to the LF conserving case in which

the effect of φµ is larger because, while φM1
can induce de only through the subdominant

neutralino-exchange diagram, φµ can induce EDM also through the dominant chargino-

exchange diagram. In contrast to the LF conserving case, in the case of figure (5) the

neutralino exchange diagram dominates because as explained in the previous section, once

we turn on the eτ elements, the neutralino-exchange diagram contributing to de is enhanced
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Figure 5: de versus Br(τ → eγ) as the CP-violating phases vary between zero and π. The

input parameters correspond to the α benchmark proposed in [18]:|µ| = 375GeV, m0 = 210GeV,

M1/2 = 285GeV and tanβ = 10 and we have set Aτ=Ae=500GeV. All the LFV elements of the

slepton mass matrix are set zero except that |(m2
L)eτ |=3500 GeV2 and |(m2

R)eτ |=15000 GeV2. To

draw the curves all phases are set zero except one that varies between 0 and π. As illustrated in

the legend of the figure, the thin solid red curve, dotted grey curve and light blue dashed curve

respectively correspond to varying phases of Aτ , µ and M1. The thin black and thick pink dotted

curves correspond to the phases of (m2
L)eτ and (m2

R)eτ which for Aeτ = Aτe lie over each other.

The thick green vertical line stretching up to de=2 × 10−26 e cm depicts the effect of the phase of

Ae. The horizontal line at 1.4 × 10−27 e cm depicts the present experimental limit [13] and the

vertical line shows the present experimental bound on Br(τ → eγ) at 9.4 × 10−8 [15].

by a factor of mτ/me. As a result, the effect of φM1
is enhanced.

Now let us discuss the degeneracy and the possibility of cancelation among different

contributions. Replacing a phase with its opposite value, its contribution to de will change

sign. As a result if we find two phases whose contributions to |de| have the same values,

we can conclude that cancelation can take place for at least one pair of values. Figure 5

shows that the curve associated with φAe has a complete overlap with the low phase part

of the other curves. That is for any value of φAe , there is a value for other phases which

can mimic the effect of φAτ . Thus, if the future EDM searches report a nonzero value for
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de, there will be an ambiguity in interpretation of the observation in terms of the phases.

Cancelation is another consequence of this overlap. This figure shows that turning on more

than one nonzero phase, cancelation can make even the maximal value of φAe consistent

with the present bound on de. That is the contribution of φAe = π/2 can be canceled out

by the effect(s) of any of the phases φM1
, φµ or the phases of (m2

L)eτ and (m2
R)eτ if these

phases are ≃ π/500. The contribution of φAe = ±π/2 can be also canceled out by the

contribution of φAτ if |φAτ | ≃ π/80.

Whereas the phase of Ae can only show up in de, the rest of phases can manifest

themselves as CP-odd effects at ILC [11]. Moreover, φM1
and φµ can give a detectable

contribution to the EDM of the neutron [22], mercury [23] and deuteron [24] through

inducing chromoelectric dipole moments and EDMs to the light quarks. Thus, from the

experimental point of view, cancelation between the effects of these phases is more exciting

as it can open up the possibility of large phases and therefore CP-odd observable quantities

in experiments other than de searches. Figure 5 shows that there are values of φM1
and/or

the phases of (m2
L)eτ and/or (m2

R)eτ whose contribution to de can cancel even the maximal

effect from φµ. That is even φµ = ±π/2 is consistent with the bound on de but in order

to cancel the effects down to the present bound a fine-tuning better than 0.1% is needed.

In [9], it was also shown that turning on the LFV elements of mass matrix, the effect of φµ

on de can be canceled by the effects of the phases of the off-diagonal elements. This result

is obviously sensitive to the largeness of the absolute values of the LFV elements which

are constrained by the null results of searches for the LFV rare lepton decays. Bearing

in mind that since [9], these bounds have significantly improved the above discussion can

be considered as an update and re-confirmation of the claim in [9] in view of the recent

bounds. Notice however that a large φµ can also give contributions to dn and dHg exceeding

their present bounds. The correlation between de and dHg has been systematically studied

in [25]. To satisfy the bounds on dn and dHg in the presence of a large φµ, there should

be another cancelation scenario at work in the quark sector. This further suppresses the

allowed parameter space; i.e., a double-folded fine-tuning.

Let us now suppose that there is a symmetry or a mechanism that sets φµ = φM1
= 0

so the bounds on dn and dHg are naturally satisfied without the above mentioned double-

folded fine-tuning problem. Let us also suppose that φAτ and the phases of (m2
L)eτ and

(m2
R)eτ are large. Figure 5 shows that this scenario is not ruled out by the de bound

because there is still the possibility of cancelation between the contributions of the nonzero

phases. To cancel the effects of φAτ ≃ π/2 on de down to the present bound, a fine-tuning

better than 1% is required.

Figure (6) has an input similar to that of figure (5) except that Aeτ and Aτe are set

nonzero and smaller values for (m2
L)eτ and (m2

R)eτ are chosen. Notice that unlike figure (5)

curves associated with the phases of (m2
L)eτ and (m2

R)eτ split. The peak of the φAτ curve

in figure (6) lies one order of magnitude below that in figure (5). That is because the

absolute values of (m2
L)eτ and (m2

R)eτ in figure (6) are smaller. Had we set these elements

larger, the effect of φAτ on de would have been larger but also the value of Br(τ → eγ)

would have increased. The rest of the argument for figure (5) holds for figure (6), too.

Figure (7) displays the dependence of de and Br(τ → eγ) on different phases for the
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Figure 6: Similarly to figure 5 except that here we have set |(m2
L)eτ | = 1000 GeV2,

|(m2
R)eτ |=5000 GeV2 and |(m2

LR)eτ | = |(m2
LR)τe| = 300 GeV2. The thin solid red curve, light

dash-dotted grey curve, light blue dashed curve, solid dashed dark blue curve and thick black dot-

ted curve respectively correspond to the varying phase of Aτ , µ, M1, (m2
L)eτ and (m2

R)eτ . The

thick green vertical line stretching up to de=2.1 × 10−26 e cm depicts the effect of the phase of

Ae. The light pink curve and thin green curve respectively correspond to phases of (m2
LR)τe and

(m2
LR)eτ . The horizontal line at 1.4 × 10−27 e cm depicts the present experimental limit [13] and

the vertical line at 9.4 × 10−8 shows the present experimental bound on Br(τ → eγ) [15].

case that there is a hierarchy between the left and right LFV elements: |Aeτ | ≪ |Aτe|
and |(m2

R))eτ | ≪ |(m2
L)eτ |. Because of this hierarchy, the effect of φAτ on de has dropped

below the present bound which is expected following the discussion in the previous section.

The lines associated with the phases of (m2
R)eτ and (m2

LR)eτ appear as vertical lines which

means Br(τ → eγ) does not depend on these phases. This is expected because |(m2
R)eτ |

and |(m2
LR)eτ | are very small. However, the effects of their phases can still exceed the

present bounds. The figure also shows that Br(τ → eγ) strongly depends on the phases of

(m2
L)eτ and (m2

LR)τe. The effect of φAe is similar to the previous cases. The φM1
curve also

appears as a vertical line which means Br(τ → eγ) does not strongly depend on φM1
. The

effect of φM1
on de in case of figure (7) is one order of magnitude smaller than the case of

figure (6) and, like the LF conserving case, is smaller than the effect of φµ. In contrast to
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Figure 7: Similarly to figure 5 except that here |(m2
L)eτ | = 3000 GeV2, |(m2

R)eτ | = 50 GeV2,

|(m2
LR)eτ |= |Aeτ |〈Hd〉=3 GeV2 and |(m2

LR)τe|= |Aτe|〈Hd〉=400 GeV2. The thin solid red curve,

light dotted grey curve, thin dotted blue curve and thin dotted pink curve respectively correspond

to varying phases of Aτ , µ, (m2
L)eτ and (m2

LR)τe. The pink, green, black and dark blue thick vertical

lines at Br(τ → eγ) = 7.5 × 10−8 (which reach up de = 6.8 × 10−27, 2 × 10−26, 3.2 × 10−26, 1.1 ×
10−25 e cm) depict de versus Br(τ → eγ) as the phases of respectively (m2

LR)eτ , Ae, (m2
R)eτ and

M1 vary between 0 and π. The horizontal line at de = 1.4 × 10−27 e cm and the vertical line at

Br(τ → eγ) = 9.4 × 10−8 show the present experimental limits [15, 13].

figures 5 and 6, in this case φµ ≃ π/2 is ruled out by the bound on de because the effects

of other phases will not be large enough to cancel the effect of φµ ≃ π/2. However, for

φµ < π/30 the effect of φM1
and for φµ < π/500 the effects of the phases of LFV mass

elements as well as that φAe can cancel the contribution from φµ to de.

5. Concluding remarks

In this paper, we have discussed the effects of the phase of trilinear A-coupling of the staus,

φAτ , on de in the presence of nonzero LFV eτ elements of the slepton mass matrix. We

have shown that for a large portion of the parameter space consistent with the present

bound on Br(τ → eγ), the contribution of φAτ to de can exceed the present bound by
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several orders of magnitude. The effect of φAτ on de strongly depends on the ratios of the

LFV slepton masses (m2
L)eτ/(m

2
R)eτ and (m2

LR)eτ/(m
2
LR)τe. In other words, for a given

Br(τ → eγ) and φAτ = ±π/2, |de| can take any value between zero and a maximum which

depends on the value of Br(τ → eγ) [see figure (3-a)]. As shown in figure (3), in the general

case that all the eτ elements are nonzero, there is no correlation between AP and de and

to solve the ambiguity, extra information is needed.

Assuming that φAτ is the only source of CP-violation contributing to de we have derived

bounds on φAτ for various values of the LFV elements giving rise to Br(τ → eγ) close to the

present bound (see figures 2 and 4). We have then relaxed this assumption and discussed

the possibility of cancelation between contributions of the different phases. We have shown

that for large eτ mass elements saturating the present bounds, the effect of the phase of the

Bino, φM1
, on de is significantly enhanced which can be explained by the enhancement of

the effect of the neutralino exchange diagram by a factor of mτ/me. Taking into account

the new bounds on branching ratios of the rare LFV tau decay, we have confirmed the

results of [7] that with nonzero LFV effects cancelation scenario makes large values of φµ

consistent with the bound on de. We have discussed that the requirement to simultaneously

satisfy the bounds on de, dn and dHg by cancelation imposes a double-folded fine tuning

problem.

We have shown that contributions from phases of (m2
L)eτ , (m2

R)eτ , (m2
LR)eτ and

(m2
LR)τe can cancel the effect of φAτ on de. In summary, although in case of large eτ

elements saturating the bounds from Br(τ → eγ), φAτ can induce a large contribution

to de, still the possibility of cancelation and/or presence of a hierarchy between the LFV

eτ mass matrix elements make even a maximal φAτ consistent with the de bound even if

Br(τ → eγ) is found to be close to its present bound. Thus, still there is a hope to observe

CP-odd effects at ILC [11].
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A. Formulation

In this appendix, we summarize the formulas necessary for calculating AP , Br(τ → eγ)

and de. In this paper, we are interested in large LFV eτ elements. In this parameter range,

the mass insertion approximation is not valid and one should work in the mass basis. Here,

we first derive the coupling of the sleptons to neutralinos and charginos in the mass basis

taking to account the CP-violating phases and mixing. We then present the formulas for

AL and AR defined in eq. (2.7) as well as for the formula for de. Throughout this appendix

we omit the spinorial indices for simplicity.

In the flavor basis, the mass terms of ẽL (the superpartners of the left-handed charged

leptons) and ẽR (the superpartners of the right-handed charged leptons) can be written as

Lslepton = −
(

ẽ†L ẽ†R

)
M2

ẽ

(
ẽL

ẽR

)
= −

(
ẽ†L ẽ†R

)(
m2

L m2†
LR

m2
LR m2

R

)(
ẽL

ẽR

)
(A.1)
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where m2
L and m2

R are 3×3 Hermitian matrices and m2
LR is a general complex 3×3 matrix.

The elements of these matrices are as follows:

(m2
L)ij = (m2

eeL
)ij + (m2

e)iδij + m2
Z cos 2β

(
− 1

2
+ sin2 θW

)
δij (A.2)

(m2
R)ij = (m2

eeR
)ij + (m2

e)iδij − m2
Z cos 2β sin2 θW δij (A.3)

and

(m2
LR)ij = mi(Ai − µ∗ tan β)δij + Aij〈Hd〉 (A.4)

where m2
eeR

and m2
eeL

are respectively the right-handed and left-handed slepton soft super-

symmetry breaking mass matrices at the electroweak energy scale and Aij is the trilinear

A-coupling [see eq. (2.2)]. We can diagonalize the mass matrix of slepton by a 6×6 unitary

matrix U l as

[U lM2
ee (U l)−1]xy = m2

ẽx
δxy (A.5)

The slepton mass eigenstate in terms of the chiral weak eigenstate are

ẽx =

3∑

i=1

[U l
x,iẽLi + U l

x,i+3ẽRi] (A.6)

Since in the MSSM no ν̃R exists, the neutrino mass matrix will be a 3 × 3 matrix whose

elements can be written as

(m2
eν)ij = (m2

eeL
)ij + (

1

2
m2

Z cos 2β)δij (A.7)

The mass eigenstate, ν̃x, is related to the weak eigenstate, ν̃Li, as

ν̃Li =

3∑

x=1

Uν∗
x,iν̃x (A.8)

Let us now consider the neutralino masses. The masses of neutralinos in the weak basis

can be written as

Lneutralino = −1

2
(X̃0)T M eN

X̃0 + H.c., (A.9)

where X̃0=(B̃, W̃ 0, H̃0
d , H̃0

u) and

M eN
=




M1 0 −mZcβsW mZsβsW

0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ

mZsβsW −mZsβcW −µ 0


 . (A.10)

Here, sβ = sinβ, cβ = cos β, sW = sin θW and cW = cos θW . The mass matrix M eN
can be

diagonalized as follows:

[ON
∗M eN

O−1
N ]AB = Mχ̃0

A
δAB (A.11)

where ON is a unitary matrix and Mχ̃0

A
are real positive mass eigenvalues. The mass

eigenstates, χ̃0
A, in terms of the weak eigenstates, X̃0

B , can be written as

χ̃0
A = (ON )ABX̃0

B . (A.12)
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The chargino mass terms can be written as

Lchargino = −1

2
(X̃±)T M eC

X̃± + H.c., (A.13)

where (X̃±)T = (W̃+, H̃+
u , W̃−, H̃−

d ) and

M eC
=

(
0 CT

C 0

)
(A.14)

with

C =

(
M2

√
2sβmW√

2cβmW µ

)
. (A.15)

The chargino mass matrix C is a general complex matrix which can be diagonalized as

U cCV c−1 = diag(|m
fχ1

− |, |m
fχ2

− |) (A.16)

where U c and V c are unitary matrices that satisfy the following relations

V c(C†C)V c−1 = diag(|m
fχ1

− |2, |m−
fχ2
|2) = U c(CC†)U c−1. (A.17)

Notice that we have defined U c and V c in a way that the elements of the diagonal matrix

U cCV c−1 are real positive. Eqs. (A.16), (A.17) are invariant under

U c →
(

eiα1 0

0 eiα2

)
U c, V c →

(
eiα1 0

0 eiα2

)
V c. (A.18)

Thus, there is an ambiguity in the definition of U c and V c but the final results do not

depend on the unphysical phases α1 and α2, as expected.

The mass eigenstates are related to the gauge eigenstates through
(

χ̃+
1

χ̃+
2

)
= V c

(
W̃+

H̃+
u

) (
χ̃−

1

χ̃−
2

)
= U c∗

(
W̃−

H̃−
d

)
. (A.19)

Within the framework of the MSSM, the lepton-slepton-neutralino coupling in the

mass basis and in the Weyl representation can be written as

L
(n)
int =

6∑

x=1

e†Li(N
R
iAx)χ̃0†

A ẽx + e†Ri(N
L
iAx)χ̃0

Aẽx + H.c., (A.20)

where the couplings are

NR
iAx = − g2√

2
([−(ON )A2 − (ON )A1 tan θW ]U l∗

x,i +
mei

mW cos β
(ON )A3U

l∗
x,i+3)

NL
iAx = − g2√

2
[2(ON )∗A1 tan θW U l∗

x,i+3 +
mei

mW cos β
(ON )∗A3U

l∗
x,i]. (A.21)

The lepton-slepton-chargino coupling can be written as

L
(c)
int =

3∑

x=1

e†Li(C
R
iAx)χ̃+†

A ν̃x + e†Ri(C
L
iAx)χ̃−

Aν̃x+H.c. (A.22)
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where the couplings are

CR
iAx = −g2U

ν∗
x,iV

c
A,1

CL
iAx =

mei√
2mW cos β

g2U
ν∗
x,iU

c
A,2. (A.23)

Let us now discuss the formulas for (AL)ij and (AR)ij defined as

eǫ†αmτ ēiσ
αβqβ[(AL)ijPL + (AR)ijPR]ej + H.c. (A.24)

where σαβ = i
2 [γα, γβ] and qβ is the four-momentum of the photon. PL and PR are

respectively the left and right projection matrices. Notice that (AL)eτ and (AR)eτ defined

in (2.7) are the eτ component of the 3 × 3 matrices (AL)ij and (AR)ij . For the CP-

conserving case the formulas for AL and AR have been developed in [16]. We have rederived

the formulae for the CP-violating case. It is convenient to decompose AL and AR as follows

AL,R = A
(n)
L,R + A

(c)
L,R (A.25)

where A
(n)
L,R and A

(c)
L,R respectively come from neutralino-slepton and chargino-sneutrino

loops. In terms of the coupling in the mass basis we can write

(A
(n)
L )ij =

4∑

A=1

6∑

x=1

1

32π2

1

m2
eex

[NL
iAxNL∗

jAx

1

6(1 − yAx)4

× (1 − 6yAx + 3y2
Ax + 2y3

Ax − 6y2
Ax ln yAx)

+ NL
iAxNR∗

jAx

Meχ0

A

mej

1

(1 − yAx)3
(1 − y2

Ax + 2yAx ln yAx)],

(A.26)

where yAx = M2
χ̃0

A

/m2
ẽx

and

(A
(c)
L )ij =

2∑

A=1

3∑

x=1

− 1

32π2

1

m2
eνx

[CL
iAxC

L∗
jAx

1

6(1 − zAx)4

× (2 + 3zAx − 6z2
Ax + z3

Ax + 6zAx ln zAx)

+ CL
iAxC

R∗
jAx

M
eχ−

A

mej

1

(1 − zAx)3
(−3 + 4zAx − z2

Ax − 2 ln zAx)]

(A.27)

zAx = M2
eχ−

A

/m2
eνx

. Finally

A
(n)
R = A

(n)
L |L↔R A

(c)
R = A

(c)
L |L↔R. (A.28)

Notice that the forms of the above formulas are similar to those in [16]; however, the

couplings NR,L and CR,L are slightly different because of the nonzero CP-violating phases.

Now, let us summarize the formula for de. It is also convenient to decompose de into

the neutralino-exchange and chargino-exchange contributions as follows:

de = d(n)
e + d(c)

e .
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These contributions have been extensively studied in the literature including in [26] which

give

d(c)
e = − e

(4π)2

2∑

A=1

3∑

x=1

Im(CL
eAxCR∗

eAx)
mχ̃−

A

m2
ν̃x

A




m2
χ̃−

A

m2
ν̃x




d(n)
e = − e

(4π)2

4∑

A=1

6∑

x=1

Im(NL
eAxNR∗

eAx)
mχ̃0

A

m2
ẽx

B

(
m2

χ̃0

A

m2
ẽx

)

where

A(x) =
1

2(1 − x)2

(
3 − x +

2 ln x

1 − x

)

and

B(x) =
1

2(1 − x)2

(
1 + x +

2x ln x

1 − x

)
.
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